International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 20-26, 2013
Copyright - IPCO

NEW OPTIMIZATION
FOR RECONFIGURABLE NETWORKED EMBEDDED CONTROL SYSTEMS

Amen Ben Hadj Afi*, Mohamed khalgtfi, Samir Ben Ahméed
*Tunis El Manar University

El Manar 1, Tunisia
'amen. benhadj al i @mai | . com

*sani r. benahmed@st . rnu. tn
"University of Carthage
Tunis, Tunisia
*mohaned. khal gui @mai | . com

Abstract— This research paper deals with Distributed
Reconfigurable Embedded Control Systems (RECS) which can
dynamically follow different behaviors at run-time according to
user requirements or any possible evolution in its environment. We
optimize a multi-agent architecture for the system in which a
Reconfiguration Agent is affected to each device to apply local
reconfigurations, and a Coordination Agent is proposed for the
coordination between devices in order to guarantee safe, coherent
and adequate distributed reconfigurations. A Communication
Protocol is proposed to handle this coordination between agents by
using well-defined Coordination Matrices.

Keywords—Distributed Embedded Control System,

Reconfiguration, Software Architecture, Multi-Agent Architecture,
Reconfiguration Protocol, Coordination.

I. INTRODUCTION

of agents: software Reconfiguration Agents (RA) ehhiare
responsible for controlling the devices and a safev
Coordination Agent (CA) which handles the coherertfe
distributed concurrent reconfigurations of differelevices. The
coordination between devices after any distributed
reconfiguration scenario is mandatory in orderwvoic any risk
of incoherence. We define also the concept of “dimation
matrix” to specify for each reconfiguration scenatie behavior
of all concerned agents that should react simultasly. We
define a reconfiguration protocol to manage therdioation
between the networked devices. When a RA wantpplyaa
new reconfiguration, it sends a request to CA. Auest
represents a need to improve the system’s perfarejar also
to recover and prevent hardware/software erroralsar to adapt
the system’s behavior to new requirements accordinghe
environment’s evolution. Once the request is reamiby the
CA, it informs all other concerned agents which igtioreact

The constant growth of complexity of embedded antrwith such RA which wants to trigger the new behavibhe

systems makes reconfiguration increasingly impartdn this
context, reconfiguration refers to the ability ofsgstem to
change its functionality at run-time, performingffelient
functions at different instances in time. This il to
reconfigure a system in real-time allows availat@dsources to
be shared between multiple functions and configonmat The
challenges, in reconfiguration, are as much abbat design
model as the level of the environment that suppexecution.

We distinguish two kinds of reconfigurations: stafl] and

dynamic reconfigurationi®]. Static reconfigurations are appliedreconfigurable embedded-control

off-line to apply changes before the system cotddt swhereas
dynamic reconfigurations are applied dynamicallyrat-time.
In the last case, two sub-classes exist: manuahfiggirations

to be executed by us€l3] and automatic reconfigurations to beygent

assured by intelligent ageriy, [4], [5]. The reconfiguration of
control systems is currently a very active reseanda where
considerable progress has been njaflg5], [9], [10].

To deal with the dynamic reconfiguration of Distried
Embedded Control Systems (DECS), we propose, gwibik a
new Multi-Agent distributed architecture. We defitveo kinds

20

execution of the reconfiguration scenario depefificively on

the answers of these reconfiguration agents whiolld decide

if the new behavior can be executed or not. Thisogmol allows

us to win an important number of exchanged messageke
network of distributed devices.

This paper gives new extensions of our previous

works [4], [5], [6] with the purpose to allow high
reconfigurability and also functional safety of DECThe work

presented in [4] deals with distributed multi-agent
systems followinge t
component-based International Industrial Standard

IEC61499 [11]. The authors define an architecture of
reconfigurable multi-agent systems and proposecadimation

that coordinates between devices by using a
communication protocol. The reconfiguration regsestre
managed by the coordinator according to their fiyiorhe role

of the coordinator is to accept or to reject a ndiguration
request. The major contribution of the current grajs to
provide new optimizations for the proposed commaiiba
protocol [4] in several directions. Firstly, wesame that the CA

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 20-26, 2013

Copyright - IPCO

PC
Typewriter
20

handles for each request an historic by givingdach RA the be approved by an entity of the multi-agent architee that
possibility to recall the execution of a given reguat different manages the collaboration and the communicationve®st
times. The management of the reconfigurations histllows distributed RAs. Consequently, we define the cohcep
saving knowledge on the requests frequency and teaenCoordination Agent that handles the coherence striduted
interactions between them (e.g. conflict or redumg® Such reconfigurations between RA. When a RA wants tdyapmew
knowledge will optimize the reconfigurability ofgtsystem and reconfiguration, it sends a request to the CA theotto have its

the CA behaviour for future reconfigurations. Ferthore, each
RA can exhibit the behavior of the CA when thigtadecides to
delegate the execution of a secondary request &eitder in the
case that this request is sent at the same time tthe one
having the highest priority. Thus, we add a newcfiomality to
the CA which is the delegation of reconfigurationanagement
to RAs. The delegation functionality presents twajon
advantages. Firstly, it aims to improve the perfance of the
CA by reducing the number of requests it handleso8dly, we
optimize the functional safety when the coordinasobroken.
In [5] and [6], the authors present a UML-baseesign
approach for agent-based

approbation. The coordination in the context of [3EG very
important because any uncontrolled dynamic recandition
can lead to critical problems when it brings thetesn to an
incoherent and unsafe behaviour. In order to mantge
coordination between RAs, we also define the conadp
Coordination Matrix (CM) which contains safe redgafation
scenarios that can be applied simultaneously bydifferent
RAs. The Coordination Agent is therefore the erttiigt handles
the set of CMs corresponding to the different réigamation
scenarios. In addition, we propose, a communicagiariocol
between distributed RAs to manage distributed riégoration

reconfigurable ECS having scenarios. In this protocol we distinguish, threied& of

centralised architecture. In the current paper, amn is to communication primitives between distributed ageatRA can
extend this previous work by considering distrillutesend a request to the CA in order to haveaitthorization for
architectures. Therefore, we assume that DECSemeritted as the execution of a reconfiguration scenario. Apoese to the
a network of interconnected controller componelnés tan have request, the CA can accept, reject (definitivelypoovisory) or
different configurations. A configuration is defthdy a set of delegate the execution of the concerned scenarteesd
components and connections between them. The éxeafta responses of the CA correspond respectively tetpranitives:
reconfiguration request must bring the system franvalid Acceptance primitive Rejection/Recall Primitive abdlegation
configuration to another one while respecting therimitive. The new extensions of the communicatmotocol

reconfiguration constraints.

This paper is structured as follows. In section & pvesent
the optimizations of the multi-agent architecturethwthe
specification of the RAs and the CA behaviors. iBecB deals
with the optimizations of the communication proto&ection 4
presents experimental results. Finally, the majmtributions of
this work and future work are emphasized in thechiion.

Il. OPTIMIZATION IN THE MULTI-AGENT ARCHITECTURE

In this section, we present an optimization in tingti-agent
architecture for reconfigurable DECH]. A system Sys is
composed of n networked devices {dev..dey}. Within the
proposed architecture we distinguish two kinds gerds:
Coordination Agent (CA) and Reconfiguration AgeriiRA)
(see Fig. 1). Both kinds of agents are represebjedoftware
components that act on the software control archite in order
to execute a particular task. The role of any, Rffected to a
particular device dev (i=1..n)
reconfigurations on the system’s architecture affedint
granularity levels. The execution of reconfiguraianust bring
the whole system from a valid configuration to #motone
while respecting the reconfiguration constraintec&ise we
assume a distributed system, each RA acts on patlof the
system’s architecture but cannot act in his onereiteives
reconfiguration requests from different sources axdcutes
them in collaboration with the other RAs under aiert
conditions in order to bring the whole system teade state.
Therefore, before execution, each reconfigurateouest must

21

(as presented irf4]) concern mainly the addition of two
functionalities: delegation and recall. The purpasethese

extensions is to have high reconfigurability anddiional safety

especially when the CA is broken.

A. Specification of the Reconfiguration Agent behavior

As previously presented in [5], the behaviour oRA is
formalized by using nested state machines. Indeeddefine
three levels of reconfiguration: the first dealghnihe system
architecture, the second deals with the internalctire of
devices or with their connections, finally the thideals with
reconfigurations of data. Therefore, in order toplgpa
reconfiguration scenarioR;;y.n, the reconfiguration agent
executes three steps as follows (i) the architatttonfiguration
AC; is loaded in the memorfAC; denotes a particular
architectural configuration), (ii) then the strugtuconfiguration
SCi; is chosen between different structural configoragi

is to apply automatic corresponding to AGiii) finally, the data configuratioidGC;;yn

is applied. DG;; correspond to a particular state machine
relative to SCi; and DC;;x, denotes a state iDCijx which
correspond to one of the following cases: (i) onenore states
of a SC state machine,(ii) more than one SC statehime, (iii)

all the AC state machines.

B. Specification of the Coordination Agent behavior

Coordination between RAs appears to be essential in
the automatic reconfiguration of DECS. Indeed, unticled
reconfigurations can lead to serious disturbance<ritical

PC
Typewriter
21

Problem Diagnos& / %ﬁ/ \&Improvment request
ji‘ P RA ﬁ
3

“/’// A N ’/, “/’//

RA, &\; ﬁ 1 x” RA
II Communication network
ﬁ / T
l ﬁ ——p Coordination between

-3 0 RA, RAy, RAG
% Vv
RA, \ ‘%\/ / RA, - ———-p Coordination between

'R',(” RA4, RA,
6

Fig. 1 Multi-agent architecture of reconfigurablE©S

problems in the system behavior because distribRR&d can CM[b,1],CM[b,2],CM[b,3],CM[b,4]. We denote in the
execute incoherent and contradictory reconfigunasoenarios following by idle agent each agenfg, (b € [1, n]), which is
if they don’t communicate correctly with respectsigstem and not required to apply any reconfiguration when oéhgerform
time constraints. To deal with these difficultiag define in this scenarios defined in CM. In this case:

section the concept of Coordination matrix with thepose of CM[b, 1] = CM[b, 2] = CM[b, 3] =CM[b, 4] =0
handling coherent reconfiguration scenarios inritiisted ECS cond’CM[bl] :cond’CM[bvz] :cond’CM[b,g],CM[bA] = True.
and we propose, thereafter, a multi-agent architectfor

distributed reconfigurable systems, where a compaiiun 1 2 3 4 Applicable reconfigurations
protocol between agents is defined to guaranteetsiaviors. 1()

Coordination Matrix : 0 0 0 0] idleagent

Let Sys be a distributed reconfigurable system of n deyice o
and let Ag,..., Ag, be n agents to handle automatic distributed A%| i@ ja ka ha| Reconfiguration to be applied by
reconfigurations of these devices. We denote irfdthewing by the RA Ag,

Reconfigurationzjaxana @ reconfiguration scenario applied by
the RA Ag,'(a € [:'L, n]) as follows: (i) the corresponding AC Aéb ib jb kb hol Reconfiguration to be applied by
state machine is in the state AC Let cond, be the set of the RA Ag,

conditions to reach this state; (ii) the SC statzhine is in the
state S@j. Let cond, be the set of conditions to reach this L .
state; (iii) the DC state machine is in the sta@J, . Let Ag.l in jn kn hn) - Reconfiguration to be applied b

condia na be the set of conditions to reach this statehdindle ~ the RA Ag,
coherent distributed reconfigurations that guamantsafe
behaviors of the whole systeBys, we define the concept of Fig. 2 The Coordination Matrix

coordination matrix (CM) of size (n,4) that definesherent . . o .
scenarios to be simultaneously applied by differeats (see We denote in addition by(Sys) the set of coordination matrices

Fig. 1). A CM is characterized as follows: eactelm (a€ [1, to be considered for the reconfiguration of thetritiated
n]) corresponds to a reconfiguration scenariembedded syster®ys. Each coordination matrix CM is applied
Reconfigurationiajakana t0 be applied byAg, as follows (see at run-time if for each agenmAg, (a€]1, n]) the following

Fig. 2):)) conditions are satisfied:
CM[a, 1] =ia ; CM[a, 2] = ja ; CM][a, 3] = ka ;CM]d] = ha
According to this definition: If an agenfg, applies the condiowga 1 =Condeygaz) =CONdema sicmad) = TTUE.

reconfiguration scenariBeconfigurationijaxaha: therefore it is

equivalent to say that it applies th&econfiguration o the other hand, we definencurrentcoordination matrices,
CM[a1],CM[a,2] CM[a3],CM[a,4]. Each other RAAG, (0 € cp, and CMtwo matrices of(Sys) that allow different
[1, n]{a}) has to apply the scenaridReconfiguration \oqqnfigurations of a same RA Ate[L, n]) as follows:

22

PC
Typewriter
22

* CM;[b,i1#0V]j€{l,2}andi €[, 4]; in this case Agp
should react when CMor CM,is loaded.

* CMq [b,i] # CM, [b, i] Vi € [1, 4]; in this case, the agent

Agy, has to apply different reconfiguration scenaribtha
same time.

According to well-defined conditions in the control
component of each Agthe CA € (Sys) request can be
accepted, delegated or refused. In the following we
present the reconfiguration algorithm and its
procedures relative to the three different idegifi
cases corresponding respectively to acceptance,
delegation and rejection/recall primitives:

To guarantee a deterministic behavior when conaurre

coordination matrices are required to be simultasBoapplied,
we define priority levels for them such that only timatrix with
the highest priority level should be applied. Wanate in the
following by:

» Concur(CM)is the set of concurrent matrices of G#M
&(Sys);

A. Acceptance primitive

In this case (see Fig. 3, a reconfiguration ageAt &y,
(a=1..n) sends a request to the CA to have itsoautition for
applying a reconfiguration scenario. The CA mustifyethe
applicability of the requested scenario by trangigr the
request to the other reconfiguration agents RA, fol..n,
b=+a). Then, the requested scenario is applicable ibrdlf the

+ level(CM)is the priority level of the matrix CM in the set RA Ag, send a positive response to the CA. ThereafterCii

Concur(CM)U {CM}.

[1l. OPTIMIZATION IN RECONFIGURATIONPROTOCOL

In this section we present an optimization in t

will authorize to the requester the execution o tequested
scenario and the other RAs must follow by applyapgropriate
reconfigurations in order to bring the whole distited system
hi@to a safe state.

reconfiguration protocol [4] which describes thehaviour of
distributed RAs orchestrated by a CA to dynamica
reconfigure DECS. The software architecture of sexgdtems is
a network of control components where each oneraisna sub-
part of the system. We assume in addition thatwswé
architecture of DECS is designed using a UML-coamli
standard. In order to guarantee safe and

. . . S ec.=0
reconfigurations, we define a Coordination Agenhated by | . .= . .
CA that handles a set of Coordination MatrigegSys) to iég:t;a:“%rﬂ? of the number of recalls for thedhg,

control the set of Reconfiguration Agents (Ad O [1, n]) as
follows:
* When a particular agent A¢a €[1, n]) should apply a
Reconfigurationis, ja ka, ha it S€NAS the following request
to CA (€ (Sys)) to obtain its authorization:

request (Ag,, CA, Reconfigurationia ja ka, ha)-

When the CA receives requests 1) from different
RAs at the same time then, it supports the highiéstity
request according to i&(Sys).

When CA € (Sys)) supports this request th
corresponds to a particular coordination matrix EN
(Sys) and if CM has the highest priority betweeh
matrices of Concur(CMY1 {CM}, then CA(E (Sys))
informs the agents that have simultaneously totre#h
Ag, as defined in CM. The following information is e
from CA (€ (Sys)) for each Ag b € [1, n]\ {a} and
CM[b,i]#0,Vi € [1, 4]:

Reconfiguration (CA, Agdy,, Reconfigurationcwp, 13, cmp, 21,
CM[b, 3], CM[b, 4])-

lIIM(priority =MAX)

cohe rﬁp\,t

BEGIN

[*the reconfiguration request that has the highest
priority is sent by Ag

nRec,=0

[*initialization of the number of recalls for theARAg,

[*a Boolean that represents the reply of CA to the
reconfiguration request sent by Ag
While (b<n)
[*for each Ag, b €[1, n]\ {a} and CM[b,i]£0, (1<i<4)/
If (cond®, = cond®, = cond®,np = True)
Then
I* Ag,b €[1,n]and CM [b, i]#0, Vi €[1, 4] */
Accept (Ag, CA, ReconfiguratioﬁCM[b, 1], CMib, 2], CMIb, 3], CMIb, 4})
[*Acceptance reply sent from Mg CA */
Else
at Reject(Ag, CA), ReconfiguratioByp, 15, cmpp, 21, cMpb, 31, cMb, 4]
4* Rejectionreply sent from Ago CA */
reply=False
End If
nEnd
If (reply=True)
[*If CA receives positive answers from all,Algen it
authorizes reconfigurations in the concerned desfite
Then
For each Ag, /* Ag, b €[1, n] and CM [b, i]#0, Vi €[1, 4]
Apply (ReconfiguratioBup, 1, cmp, 21, cMb, 31, CMDb, 4)

[*Execution of the reconfiguration scenario in thdevice

23

PC
Typewriter
23

supervised by AY Ad, (a=1..n)). Then the execution of a second request can be
Else reported to an ulterior time. Nevertheless, to ginmre
Call Rejection/Recall primitive flexibility and optimality to our multi-agent ardkicture, the CA
End If can delegate to a RA Adc=1..n, e=a), the application of the
Else second reconfiguration request (see Fig. 5) wheis inhot
[*the case of a reconfiguration request r that havethe | conflicting with the first scenario (with the higdtepriority) i.e.
highest priority sent by a RA &¢ it doesn’t bring the system to an unsafe state.
Call Delegation primitive
End If i=1 /*initialization of line’s index

Fig. 3 Acceptance Primitive. j=1 [initialization of column’s index

k=1 /*initialization of a counter for the list Conc

B. Optimization: Rejection/Recall primitive h=1 /*initialization of a counter for the list notConc

In the case of acceptance, all the RA,Ab=1..n, ka) must| For eachlinein CM[i j]

send a positive response to the CA before applying/*research in CM for the list of RAs that are ndiei and must
reconfiguration scenario. In the rejection casee (5. 4), if | @pply the same reconfiguration scenario than*Ag

there is only one RA Agthat sends a negative response thewhile(CM [i,j]= CM [aj]] and j<4)

the reconfiguration request is rejected. In addijtive assume /*CM corresponds to the reconfiguration requesttthas the
that the CA can manage a history which is relativeeach | highest priority*/

reconfiguration request. Indeed, the CA gives tbssibility to | 1=/+1

the RAs to make several attempts to execute a gieenario| End

before a definitive final rejection. The maximumnmuer of | 1f(i=4)

attempts relative to a reconfiguration scenaridixed by the | Then

CA. When a request is rejected, it is placed inadting queue| Conclk]=i

which is managed by the CA, while the RA has nathed the| /*Conc is the list of RAs (different of A&oncerned by the
allowed maximum number of attempts. The RA, ¢apghest priority requestin CM and that must apiply same
subsequently recall the CA of its request. Otheswié the | reconfiguration scenario than AY

maximum number is reached, then the request isiteélly | k=k+1

rejected and will not be stored in the waiting qeieTherefore,| Else

in addition to Rejection primitives, the CA has thhkility to | NotCon[h]=i

manage particular rejection cases (not definitig) Recall | /*notConc is the list of RAs (different of #@oncerned by the
primitives under known conditions. The purposettaf recall| highest priority request in CM and that not apptg same
process is to allow a high reconfigurability of tibole system. | reconfiguration scenario than Ag

i=i+1

/*CA receives a negative answer from a particidgent Ag End If

If (nRec<maxRec) END

I*maxRec is a constant predefined by the CA amdgtesents| | i=1/*initialization of line’s index

the maximal number of recalls authorized by the f6A a | | j=1/*initialization of column’s index

reconfiguration request*/ while(i<k) //for each element i€onc

nRec=nRec+1 j=1 [*Initialization of column’s index

Reject(CA)), Ag, Reconfiguration, ja ka, ha NREE) while(CM,[Conc]i] ,j]= 0 and and j <4)

[*Provisory Rejectionmeply sent from CA to A¢/ [*CM, represents a reconfiguration regeststhat havereét t

Else/* if nRec= maxRec highest priority sent by a RA £&¢

Reject(CA), Ag, Reconfigurations, ja ka, ha MaxRec) =i+l

[*Definitive Rejectiorreply sent from CA to At/ End

End If If (j=4)

Fig. 4 Rejection/Recall Primitive. /* the RA having the same line index than Conc[i] M, G

idle*/

C. Optimization: Delegation primitive Then

In the common case, the CA defines by consideravgml | i=i+1
constraints, a priority order to handle the reagunfation | Else
requests coming from different and distributed Risthe case| |f(NRecc<maxRex)
that the CA receives two requests at the same tinee, it will | /“max recall number of the RA A not reached*/
deal with the request having the highest prioritgng by a RA|_Reject(CA), Ag, Reconfiguration, ic, ke, n. NR€Cc)

24

PC
Typewriter
24

nRec.- nRec.+1
[*The reconfiguration request is rejected becaulmsre exists a|
not idle Ra having the same line index than theJRAC]i] in
CM, */
Else
Reject(CA), Ag, ReconfigurationR jc, ke, o MaxRec)
End If
End
i=1/*initialization of line’s index
j=1 [*initialization of column’s index
while(i<h) /*for each element imotConc
j=1 [*Initialization of column’s index
while(CM,[notConc[i],j]= CM[notConc[i],j] and j <4)
/*CM, and CM have exactly the same line then the
reconfiguration request r is the same than the egjtpriority
one and it will be definitively rejected*/
Reject(CA, Ag, Reconfiguration; i, kc,ne MaxRec)
End
If (j=4)
/*the RA having the same line index than Concl[ifoN, is
idle*/
Then
i=i+1
Else
[*The reconfiguration request is rejected becaulszd exists d
not idle RA having the same line index than the(RACc]i] in
CM*/
If(nRec<maxRec)
Reject(CA, Ag Reconfiguration jc, kc, hcNReC)
nReg- NReg+1
Else
Reject(CA, Ag Reconfiguration jc, ke, ne MaxRec)
End If
End If
End
[*The reconfiguration request r is delegated whériree RAs
of Conc are idle in CiMand all RAs in notCon have to execute
a different request than the highest priority one*/
Delegate(CA), Ag Reconfiguration; ic «c, nd
End If
END

Fig. 5 Delegation Primitive.

IV. EXPERIMENTAL RESULTS

In this section, we give an evaluation of the psmmb
communication protocol for intelligent reconfiguoats of
DECS by varying the number of reconfiguration mgssa
exchanged within the network of distributed ageWs. assume
that n RAs send n reconfiguration requests at dieestime. We
denote by msg the number of exchanged messages
distributed agents when we use a CA in the netwlorkhe case
of absence of coordination, we denote by msg thabau of
exchanged messages. A message in both cases casergpa

25

request, an acceptance, a rejection (provisoryedinitive), a
delegation or an execution order (apply) from tberdinator.
The gain (denoted by G) obtained by the proposetbpol is
msgc / msg and it represents the decrease of tbieaeged
messages between distributed devices when we Gge b the
following, we will detail different cases of exemit:

« If one message is accepted (among n requestsseariRBAs)
and all others are refused (only the highest-gyiariessage
is accepted). Then, the number of exchanged messdte
coordination ismsg = 5*n-3. In the case of absence of
coordination, we will havensg= 2*n*-n-1. The gain with
the use of a coordinator is G =rgsasg = 5*n-3 / 2*A-n-1.

« If the delegation primitive is applied (in preserafea CA),
for example we assume that among n messages, paliso
accepted by the CA, (n-1)*0,5 are rejected (i.€0560f the
rest of requests) and (n-1)*0,5 are delegated fferdnt
RAs. Thus,msg = 3*n”/2+2*n-3/2, msg= 5*n’/2-2*n-1/2
and G = 3*A/2+2*n-3/2 / 5*f/2-2*n-1/2.

As application, we consider a network of 100 dttéd

RAs transporting 60 messages per minute. We assnme
addition that probably 20 reconfigurations are e=ged per
minute. Therefore, the gain in the first case (dowtion

without delegation as published [4]) is G=0,12 and with
delegation G= 0,66.

0,16

0,14
0,12 A _—

0,1
0,08 %
0,06

0,04 \

0,02 \

0 T T T T]
0 50 100 150 200 250

Fi

g. 6 Evolution of the gain in number of exchangegssages.

The graph of Fig. 6 shows two curves correspondinthe
evolution of the gain in number of exchanged messam the

network of N RAs (108N<1000). The values of the abscises

axis correspond to the number of reconfiguratioquests per
minute. The curve in bleu corresponds to the gairerwwe
apply a simple acceptance primitive (i.e. acceman€ the
highest-priority message by the CA). The curve ied r
corresponds to the gain when we apply in additionthe
coordination, the delegation primitive. In partiaylit represents
We evolution of gain when only 10% of messagesiategated.
It is important to note that the gain increasespprtionally to
the percentage of delegated messages. In conclusien
presence of a CA on the network of distributed RAlsws

PC
Typewriter
25

obtaining a gain which decreases when the numbeRAsd

increases. However, this gain can be clearly optchiwhen we
apply the proposed extensions. In particular, tiditeon of the
delegation primitive to the communication protocalows

having a gain that evolves proportionally to thenber of RAs.
Consequently, the delegation allows to ameliodageftinctional
safety of the whole systems even if the CA is broke

V. CONCLUSION

By assuming recall and delegation primitives, weppise in
this paper a new optimization of a defined multaig
architecture in [4] for reconfigurable DECS. Wee the gain
of this extension by considering a formal example.new
protocol is proposed to guarantee safe and cohdistmibuted
reconfigurations at run-time according to user hegments.
This protocol is based on reconfiguration agenfectédéd to
devices, and a coordinator as well as coordinatiatrices for a
useful coordination between devices after any riégoration
scenario. Different directions can be mentionefuaber work.
First of all, we plan to deal with a formal verditbon by using
UPPAAL to validate the change from one safe coméigan to
another. We plan also to test our approach in tmdext of a
real-time operating system.

REFERENCES

[1] C. Angelov, K. Sierszecki, and N. Marian, “Desigrodels for

reusable and reconfigurable state machines”L.Th Yang and

(7]

(8]

El

[10]

[11]

All (Eds): EUC 2005 LNCS 3824, pp:152-163. International

Federation for Information Processing, 2005.

R. Brennan, P. Vrba, P. Tichy, A. Zoitl, C. SuinderStrasser, V.
Marik. “Developments in dynamic and intelligentaefiguration
of industrial automation”. Computers in Industry | v89(6),

pp.533-547, 2008.

M-N. Rooker, C. Sunder, T. Strasser, A. Zoitl, Quniiner and
G. Ebenhofer, “Zero Downtime Reconfiguration of tisuted

Automation Systems TheCEDAC Approach”, Third

International Conference on Industrial Application$ Holonic
and Multi-Agent SystemSpringer-Verlag, 2007.

M. Khalgui and O. Mosbahi, “Intelligent Distribute@ontrol

Systems”, Information and Software Technology, V&2(12),
pp. 1259-1271, December 2010.

A. Ben Hadj Ali, M. Khalgui, and S. Ben Ahmed, “UMRased
Design and Validation of Intelligent
Reconfigurable Embedded Control Systems”, Inteomai
Journal of System Dynamics Applications, vol.1{ip),17, 2012,
ISSN: 21609772,

A. Ben Hadj Ali, M. Khalgui, A. Valentini, and S.d8 Ahmed,
“Safe

(2]

(3]

(4]

5]

(6]

reconfigurations of agents-based embeddedtraton

Agents-Based

26

systems”, in Proc. IECON 2011 - 37th Annual Confere on
IEEE Industrial Electronics Society, 2011, p. 4344.

FESTO description, Martin Luther University, German
http://aut.informatik.uni-halle.de/forschung/testhe2008.

EnAS description. Martin Luther University, Germany
http://aut.informatik.uni-halle.de/forschung/enasm/, 2008.

Y. Alsafi, V. Vyatkin, Ontology-based reconfigurati agent for
intelligent mechatronic systems in flexible mantfang.
Robotics and Computer-Integrated Manufacturing, udeé 26,
Issue 4, Pages 381-391, August 2010.

A. Zoitl, W. Lepuschitz, M. Merdan, M. Vallee, A ReTime
Reconfiguration Infrastructure for Distributed Erdded Control
Systems, IEEE International Conference ETFA, 2010.
Industrial Process Measurements and Control Systéms.
IEC61499 2004.

PC
Typewriter
26

