
NEW OPTIMIZATION
FOR RECONFIGURABLE NETWORKED EMBEDDED CONTROL SYSTEMS

Amen Ben Hadj Ali#1, Mohamed khalgui*2, Samir Ben Ahmed#3

#Tunis El Manar University
El Manar 1, Tunisia

1amen.benhadjali@gmail.com
3samir.benahmed@fst.rnu.tn

*University of Carthage

 Tunis, Tunisia
2mohamed.khalgui@gmail.com

Abstract— This research paper deals with Distributed
Reconfigurable Embedded Control Systems (RECS) which can
dynamically follow different behaviors at run-time according to
user requirements or any possible evolution in its environment. We
optimize a multi-agent architecture for the system in which a
Reconfiguration Agent is affected to each device to apply local
reconfigurations, and a Coordination Agent is proposed for the
coordination between devices in order to guarantee safe, coherent
and adequate distributed reconfigurations. A Communication
Protocol is proposed to handle this coordination between agents by
using well-defined Coordination Matrices.

Keywords—Distributed Embedded Control System,

Reconfiguration, Software Architecture, Multi-Agent Architecture,
Reconfiguration Protocol, Coordination.

I. INTRODUCTION

The constant growth of complexity of embedded control
systems makes reconfiguration increasingly important. In this
context, reconfiguration refers to the ability of a system to
change its functionality at run-time, performing different
functions at different instances in time. This ability to
reconfigure a system in real-time allows available resources to
be shared between multiple functions and configurations. The
challenges, in reconfiguration, are as much about the design
model as the level of the environment that supports execution.
We distinguish two kinds of reconfigurations: static [1] and
dynamic reconfigurations [2]. Static reconfigurations are applied
off-line to apply changes before the system could start, whereas
dynamic reconfigurations are applied dynamically at run-time.
In the last case, two sub-classes exist: manual reconfigurations
to be executed by users [3] and automatic reconfigurations to be
assured by intelligent agents [2], [4], [5]. The reconfiguration of
control systems is currently a very active research area where
considerable progress has been made [1], [5], [9], [10].

To deal with the dynamic reconfiguration of Distributed
Embedded Control Systems (DECS), we propose, in this work a
new Multi-Agent distributed architecture. We define two kinds

of agents: software Reconfiguration Agents (RA) which are
responsible for controlling the devices and a software
Coordination Agent (CA) which handles the coherence of
distributed concurrent reconfigurations of different devices. The
coordination between devices after any distributed
reconfiguration scenario is mandatory in order to avoid any risk
of incoherence. We define also the concept of “coordination
matrix” to specify for each reconfiguration scenario the behavior
of all concerned agents that should react simultaneously. We
define a reconfiguration protocol to manage the coordination
between the networked devices. When a RA wants to apply a
new reconfiguration, it sends a request to CA. A request
represents a need to improve the system’s performance, or also
to recover and prevent hardware/software errors, or also to adapt
the system’s behavior to new requirements according to the
environment’s evolution. Once the request is received by the
CA, it informs all other concerned agents which should react
with such RA which wants to trigger the new behavior. The
execution of the reconfiguration scenario depends effectively on
the answers of these reconfiguration agents which should decide
if the new behavior can be executed or not. This protocol allows
us to win an important number of exchanged messages on the
network of distributed devices.

This paper gives new extensions of our previous
works [4], [5], [6] with the purpose to allow high
reconfigurability and also functional safety of DECS. The work
presented in [4] deals with distributed multi-agent
reconfigurable embedded-control systems following the
component-based International Industrial Standard
IEC61499 [11]. The authors define an architecture of
reconfigurable multi-agent systems and propose a coordination
agent that coordinates between devices by using a
communication protocol. The reconfiguration requests are
managed by the coordinator according to their priority. The role
of the coordinator is to accept or to reject a reconfiguration
request. The major contribution of the current paper is to
provide new optimizations for the proposed communication
protocol [4] in several directions. Firstly, we assume that the CA

PC
Typewriter
International Conference on Control, Engineering & Information Technology (CEIT'13)

Proceedings Engineering & Technology - Vol.3, pp. 20-26, 2013

Copyright - IPCO

PC
Typewriter
20

handles for each request an historic by giving for each RA the
possibility to recall the execution of a given request at different
times. The management of the reconfigurations historic allows
saving knowledge on the requests frequency and eventual
interactions between them (e.g. conflict or redundancy). Such
knowledge will optimize the reconfigurability of the system and
the CA behaviour for future reconfigurations. Furthermore, each
RA can exhibit the behavior of the CA when this later decides to
delegate the execution of a secondary request to its sender in the
case that this request is sent at the same time than the one
having the highest priority. Thus, we add a new functionality to
the CA which is the delegation of reconfigurations management
to RAs. The delegation functionality presents two major
advantages. Firstly, it aims to improve the performance of the
CA by reducing the number of requests it handles. Secondly, we
optimize the functional safety when the coordinator is broken.
In [5] and [6], the authors present a UML-based design
approach for agent-based reconfigurable ECS having a
centralised architecture. In the current paper, our aim is to
extend this previous work by considering distributed
architectures. Therefore, we assume that DECS are described as
a network of interconnected controller components that can have
different configurations. A configuration is defined by a set of
components and connections between them. The execution of a
reconfiguration request must bring the system from a valid
configuration to another one while respecting the
reconfiguration constraints.

This paper is structured as follows. In section 2 we present
the optimizations of the multi-agent architecture with the
specification of the RAs and the CA behaviors. Section 3 deals
with the optimizations of the communication protocol. Section 4
presents experimental results. Finally, the major contributions of
this work and future work are emphasized in the conclusion.

II. OPTIMIZATION IN THE MULTI-AGENT ARCHITECTURE

In this section, we present an optimization in the multi-agent
architecture for reconfigurable DECS [4]. A system Sys is
composed of n networked devices {dev1, …devn}. Within the
proposed architecture we distinguish two kinds of agents:
Coordination Agent (CA) and Reconfiguration Agents (RA)
(see Fig. 1). Both kinds of agents are represented by software
components that act on the software control architecture in order
to execute a particular task. The role of any RAi affected to a
particular device devi (i=1..n) is to apply automatic
reconfigurations on the system’s architecture at different
granularity levels. The execution of reconfigurations must bring
the whole system from a valid configuration to another one
while respecting the reconfiguration constraints. Because we
assume a distributed system, each RA acts on a sub part of the
system’s architecture but cannot act in his one: it receives
reconfiguration requests from different sources and executes
them in collaboration with the other RAs under certain
conditions in order to bring the whole system to a safe state.
Therefore, before execution, each reconfiguration request must

be approved by an entity of the multi-agent architecture that
manages the collaboration and the communication between
distributed RAs. Consequently, we define the concept of
Coordination Agent that handles the coherence of distributed
reconfigurations between RA. When a RA wants to apply a new
reconfiguration, it sends a request to the CA in order to have its
approbation. The coordination in the context of DECS is very
important because any uncontrolled dynamic reconfiguration
can lead to critical problems when it brings the system to an
incoherent and unsafe behaviour. In order to manage the
coordination between RAs, we also define the concept of
Coordination Matrix (CM) which contains safe reconfiguration
scenarios that can be applied simultaneously by the different
RAs. The Coordination Agent is therefore the entity that handles
the set of CMs corresponding to the different reconfiguration
scenarios. In addition, we propose, a communication protocol
between distributed RAs to manage distributed reconfiguration
scenarios. In this protocol we distinguish, three kinds of
communication primitives between distributed agents: a RA can
send a request to the CA in order to have its authorization for
the execution of a reconfiguration scenario. As response to the
request, the CA can accept, reject (definitively or provisory) or
delegate the execution of the concerned scenario. These
responses of the CA correspond respectively to three primitives:
Acceptance primitive Rejection/Recall Primitive and Delegation
primitive. The new extensions of the communication protocol
(as presented in [4]) concern mainly the addition of two
functionalities: delegation and recall. The purpose of these
extensions is to have high reconfigurability and functional safety
especially when the CA is broken.

A. Specification of the Reconfiguration Agent behavior

As previously presented in [5], the behaviour of a RA is
formalized by using nested state machines. Indeed, we define
three levels of reconfiguration: the first deals with the system
architecture, the second deals with the internal structure of
devices or with their connections, finally the third deals with
reconfigurations of data. Therefore, in order to apply a
reconfiguration scenario �i,j,k,h, the reconfiguration agent
executes three steps as follows (i) the architectural configuration
ACi is loaded in the memory (ACi denotes a particular
architectural configuration), (ii) then the structural configuration
SCi,j is chosen between different structural configurations
corresponding to ACi (iii) finally, the data configuration DCi,j,k,h
is applied. DCi,j,k correspond to a particular state machine
relative to SCi,j and DCi,j,k,h denotes a state in DCi,j,k which
correspond to one of the following cases: (i) one or more states
of a SC state machine,(ii) more than one SC state machine, (iii)
all the AC state machines.

B. Specification of the Coordination Agent behavior

Coordination between RAs appears to be essential in
the automatic reconfiguration of DECS. Indeed, uncontrolled
reconfigurations can lead to serious disturbances or critical

PC
Typewriter
21

Fig. 1 Multi-agent architecture of reconfigurable DECS

problems in the system behavior because distributed RAs can
execute incoherent and contradictory reconfiguration scenarios
if they don’t communicate correctly with respect to system and
time constraints. To deal with these difficulties, we define in this
section the concept of Coordination matrix with the purpose of
handling coherent reconfiguration scenarios in distributed ECS
and we propose, thereafter, a multi-agent architecture for
distributed reconfigurable systems, where a communication
protocol between agents is defined to guarantee safe behaviors.

Coordination Matrix
Let Sys be a distributed reconfigurable system of n devices,

and let Ag1,..., Agn be n agents to handle automatic distributed
reconfigurations of these devices. We denote in the following by
Reconfigurationia,ja,ka,ha a reconfiguration scenario applied by
the RA Aga (a ∈ [1, n]) as follows: (i) the corresponding AC
state machine is in the state ACia . Let condaia be the set of
conditions to reach this state; (ii) the SC state machine is in the
state SCia,ja. Let condaja be the set of conditions to reach this
state; (iii) the DC state machine is in the state DCka,ha . Let
conda

ka,ha be the set of conditions to reach this state. To handle
coherent distributed reconfigurations that guarantee safe
behaviors of the whole system Sys, we define the concept of
coordination matrix (CM) of size (n,4) that defines coherent
scenarios to be simultaneously applied by different RAs (see
Fig. 1). A CM is characterized as follows: each line a (a ∈ [1,
n]) corresponds to a reconfiguration scenario
Reconfigurationia,ja,ka,ha to be applied by Aga as follows (see
Fig. 2):

CM[a, 1] = ia ; CM[a, 2] = ja ; CM[a, 3] = ka ;CM[a, 4] = ha
According to this definition: If an agent Aga applies the
reconfiguration scenario Reconfigurationia,ja,ka,ha, therefore it is
equivalent to say that it applies the Reconfiguration
CM[a,1],CM[a,2],CM[a,3],CM[a,4]. Each other RA Agb (b ∈
[1, n]\{a}) has to apply the scenario Reconfiguration

CM[b,1],CM[b,2],CM[b,3],CM[b,4]. We denote in the
following by idle agent, each agent Agb (b ∈ [1, n]), which is
not required to apply any reconfiguration when others perform
scenarios defined in CM. In this case:

CM[b, 1] = CM[b, 2] = CM[b, 3] = CM[b, 4] = 0
condb

CM[b,1] =condbCM[b,2] =condbCM[b,3],CM[b,4] = True.

 1 2 3 4 Applicable reconfigurations
 1 :

 .
:
.

:
.

:
.

 :
.

0 0 0 0 ← Idle agent

 Aga ia ja ka ha ← Reconfiguration to be applied by
the RA Aga

 :
.

:
 .

:
 .

:
 .

:
.

 Agb ib jb kb hb ← Reconfiguration to be applied by
the RA Agb

 :
.

:
 .

:
 .

:
 .

:
.

 Agn in jn kn hn ← Reconfiguration to be applied by
the RA Agn

Fig. 2 The Coordination Matrix

We denote in addition by ξ(Sys) the set of coordination matrices
to be considered for the reconfiguration of the distributed
embedded system Sys. Each coordination matrix CM is applied
at run-time if for each agent Aga (a∈[1, n]) the following
conditions are satisfied:

conda
CM[a,1] =condaCM[a,2] =condaCM[a,3],CM[a,4] = True.

On the other hand, we define concurrent coordination matrices,
CM1 and CM2 two matrices of ξ(Sys) that allow different
reconfigurations of a same RA Agb (b∈[1, n]) as follows:

RA1 RA
5

RA
4

RA
3

RA
2

CA

RA
6

Communication network

Problem Diagnosis Improvment request

 Coordination between
RA2, RA1, RA6

 Coordination between
RA4, RA2

PC
Typewriter
22

• CMj [b, i] ≠ 0 ∀ ∈ ∈ j {1, 2} and i [1, 4]; in this case Agb

should react when CM1 or CM2 is loaded.
• CM1 [b, i] ≠ CM2 [b, i] ∀i ∈ [1, 4]; in this case, the agent

Agb has to apply different reconfiguration scenarios at the
same time.

To guarantee a deterministic behavior when concurrent
coordination matrices are required to be simultaneously applied,
we define priority levels for them such that only the matrix with
the highest priority level should be applied. We denote in the
following by:

• Concur(CM) is the set of concurrent matrices of CM ∈
ξ(Sys);

• level(CM) is the priority level of the matrix CM in the set
Concur(CM) ∪ {CM}.

III. OPTIMIZATION IN RECONFIGURATION PROTOCOL

In this section we present an optimization in the
reconfiguration protocol [4] which describes the behaviour of
distributed RAs orchestrated by a CA to dynamically
reconfigure DECS. The software architecture of such systems is
a network of control components where each one controls a sub-
part of the system. We assume in addition that software
architecture of DECS is designed using a UML-compliant
standard. In order to guarantee safe and coherent
reconfigurations, we define a Coordination Agent denoted by
CA that handles a set of Coordination Matrices ℰ (Sys) to
control the set of Reconfiguration Agents (Agi , i ∈ [1, n]) as
follows:

• When a particular agent Aga (a ∈ [1, n]) should apply a
Reconfigurationia, ja, ka, ha it sends the following request
to CA (ℰ (Sys)) to obtain its authorization:

request (Aga, CA, Reconfigurationia, ja, ka, ha).

• When the CA receives r requests (r≥1) from different
RAs at the same time then, it supports the highest priority
request according to its ℰ (Sys).

• When CA (ℰ (Sys)) supports this request that
corresponds to a particular coordination matrix CM ∈ ℰ
(Sys) and if CM has the highest priority between all
matrices of Concur(CM) ∪ {CM}, then CA(ℰ (Sys))
informs the agents that have simultaneously to react with
Aga as defined in CM. The following information is sent
from CA (ℰ (Sys)) for each Agb, b ∈ [1, n]\ {a} and
CM[b,i]≠0, ∀ i ∈ [1, 4]:

Reconfiguration (CA, Agb, ReconfigurationCM[b, 1], CM[b, 2],

CM[b, 3], CM[b, 4]).

• According to well-defined conditions in the control
component of each Agb, the CA (ℰ (Sys) request can be
accepted, delegated or refused. In the following we
present the reconfiguration algorithm and its
procedures relative to the three different identified
cases corresponding respectively to acceptance,
delegation and rejection/recall primitives:

A. Acceptance primitive

In this case (see Fig. 3, a reconfiguration agent RA Aga
(a=1..n) sends a request to the CA to have its authorization for
applying a reconfiguration scenario. The CA must verify the
applicability of the requested scenario by transferring the
request to the other reconfiguration agents RA Agb (b=1..n,
b≠a). Then, the requested scenario is applicable only if all the
RA Agb send a positive response to the CA. Thereafter, the CA
will authorize to the requester the execution of the requested
scenario and the other RAs must follow by applying appropriate
reconfigurations in order to bring the whole distributed system
into a safe state.

BEGIN
If(priority = MAX)
/*the reconfiguration request that has the highest
priority is sent by Aga
nReca=0
/*initialization of the number of recalls for the RA Aga

nRecc=0
/*initialization of the number of recalls for the RA Agc
reply = True
/*a Boolean that represents the reply of CA to the
reconfiguration request sent by Aga
While (b≤n)
/*for each Agb, b ∈ [1, n]\ {a} and CM[b,i]≠0, (1≤i≤4)*/

If (condb
ib = condb

jb = condb
kb,hb = True)

 Then
/* Agb b ∈ [1, n] and CM [b, i] ≠ 0, ∀ i ∈ [1, 4] */
Accept (Agb, CA, Reconfigurationb CM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4]))
/*Acceptance reply sent from Agb to CA */

Else
 Reject (Agb, CA), ReconfigurationCM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4]
, 0)
/* Rejection reply sent from Agb to CA */
reply= False

End If
End
If (reply= True)
/*If CA receives positive answers from all Agb then it
authorizes reconfigurations in the concerned devices*/
Then
For each Agb /* Agb b ∈ [1, n] and CM [b, i] ≠ 0, ∀ i ∈ [1, 4]
Apply (ReconfigurationCM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4])
/*Execution of the reconfiguration scenario in the device

PC
Typewriter
23

supervised by Agb*/

Else
Call Rejection/Recall primitive
End If
Else
/*the case of a reconfiguration request r that haven’t the
highest priority sent by a RA Agc*/
Call Delegation primitive
End If

Fig. 3 Acceptance Primitive.

B. Optimization: Rejection/Recall primitive

In the case of acceptance, all the RA Agb (b=1..n, b≠a) must
send a positive response to the CA before applying a
reconfiguration scenario. In the rejection case (see Fig. 4), if
there is only one RA Agb that sends a negative response then,
the reconfiguration request is rejected. In addition, we assume
that the CA can manage a history which is relative to each
reconfiguration request. Indeed, the CA gives the possibility to
the RAs to make several attempts to execute a given scenario
before a definitive final rejection. The maximum number of
attempts relative to a reconfiguration scenario is fixed by the
CA. When a request is rejected, it is placed in a waiting queue
which is managed by the CA, while the RA has not reached the
allowed maximum number of attempts. The RA, can
subsequently recall the CA of its request. Otherwise, if the
maximum number is reached, then the request is definitively
rejected and will not be stored in the waiting queue. Therefore,
in addition to Rejection primitives, the CA has the ability to
manage particular rejection cases (not definitive) by Recall
primitives under known conditions. The purpose of the recall
process is to allow a high reconfigurability of the whole system.

/*CA receives a negative answer from a particular agent Agb
If (nRec<maxRec)
/*maxRec is a constant predefined by the CA and it represents
the maximal number of recalls authorized by the CA for a
reconfiguration request*/
nRec=nRec+1
Reject(CA)), Aga, Reconfiguration ia, ja, ka, ha, nReca)
/*Provisory Rejection reply sent from CA to Aga */

Else /* if nRec= maxRec
Reject(CA), Aga, Reconfiguration ia, ja, ka, ha, maxRec)
/*Definitive Rejection reply sent from CA to Aga*/
End If

Fig. 4 Rejection/Recall Primitive.

C. Optimization: Delegation primitive

In the common case, the CA defines by considering several
constraints, a priority order to handle the reconfiguration
requests coming from different and distributed RAs. In the case
that the CA receives two requests at the same time, then it will
deal with the request having the highest priority (sent by a RA

Aga (a=1..n)). Then the execution of a second request can be
reported to an ulterior time. Nevertheless, to give more
flexibility and optimality to our multi-agent architecture, the CA
can delegate to a RA Agc (c=1..n, c≠a), the application of the
second reconfiguration request (see Fig. 5) when it is not
conflicting with the first scenario (with the highest priority) i.e.
it doesn’t bring the system to an unsafe state.

i=1 /*initialization of line’s index
j=1 /*initialization of column’s index
k=1 /*initialization of a counter for the list Conc
h=1 /*initialization of a counter for the list notConc
For each line in CM[i,j]
/*research in CM for the list of RAs that are not idle and must
apply the same reconfiguration scenario than Aga*/
while(CM [i,j]= CM [a,j] and j≤4)
/*CM corresponds to the reconfiguration request that has the
highest priority*/
 j=j+1
End
If(j=4)
Then
Conc[k]=i
/*Conc is the list of RAs (different of AGa) concerned by the
highest priority request in CM and that must apply the same
reconfiguration scenario than Aga*/

k=k+1
Else
notCon[h]=i
/*notConc is the list of RAs (different of AGa) concerned by the
highest priority request in CM and that not apply the same
reconfiguration scenario than Aga*/

i=i+1
End If
END
i=1 /*initialization of line’s index
j=1 /*initialization of column’s index
while(i≤k) //for each element in Conc
j=1 /*Initialization of column’s index
while(CMr[Conc[i],j]= 0 and and j ≤4)
/*CMr represents a reconfiguration reqeststhat haven’t the
highest priority sent by a RA Agc*/
j=j+1
End
If (j=4)
/* the RA having the same line index than Conc[i] in CMr is
idle*/
Then
i=i+1
Else
If(nRecc≤maxRec)
/*max recall number of the RA Agc is not reached*/
Reject(CA), Agc, Reconfiguration ic, jc, kc, hc, nRecc)

PC
Typewriter
24

nRecc= nRecc+1
/*The reconfiguration request is rejected because there exists a
not idle Ra having the same line index than the RA Conc[i] in
CMr */
Else
Reject(CA), Agc, Reconfiguration ic, jc, kc, hc, maxRec)
End If
End
i=1 /*initialization of line’s index
j=1 /*initialization of column’s index
while(i≤h) /*for each element in notConc
j=1 /*Initialization of column’s index
while(CMr[notConc[i],j]= CM[notConc[i],j] and j ≤4)
/*CMr and CM have exactly the same line then the
reconfiguration request r is the same than the highest priority
one and it will be definitively rejected*/
Reject(CA, Agc, Reconfiguration ic, jc, kc, hc, maxRec)
End
If (j=4)
/*the RA having the same line index than Conc[i] in CMr is
idle*/
Then
i=i+1
Else
/*The reconfiguration request is rejected because there exists a
not idle RA having the same line index than the RA Conc[i] in
CMr*/
If(nRec<maxRec)
 Reject(CA, Agc, Reconfiguration ic, jc, kc, hc nRecc)
 nRecc= nRecc+1
Else
 Reject(CA, Agc, Reconfiguration ic, jc, kc, hc, maxRec)
End If
End If
End
/*The reconfiguration request r is delegated when all the RAs
of Conc are idle in CMr and all RAs in notCon have to execute
a different request than the highest priority one*/
Delegate(CA), Agc, Reconfiguration ic, jc, kc, hc)
End If
END

Fig. 5 Delegation Primitive.

IV. EXPERIMENTAL RESULTS

In this section, we give an evaluation of the proposed
communication protocol for intelligent reconfigurations of
DECS by varying the number of reconfiguration messages
exchanged within the network of distributed agents. We assume
that n RAs send n reconfiguration requests at the same time. We
denote by msgc the number of exchanged messages by
distributed agents when we use a CA in the network. In the case
of absence of coordination, we denote by msg the number of
exchanged messages. A message in both cases can represent a

request, an acceptance, a rejection (provisory or definitive), a
delegation or an execution order (apply) from the coordinator.
The gain (denoted by G) obtained by the proposed protocol is
msgc / msg and it represents the decrease of the exchanged
messages between distributed devices when we use a CA. In the
following, we will detail different cases of execution:
• If one message is accepted (among n requests sent by n RAs)

and all others are refused (only the highest-priority message
is accepted). Then, the number of exchanged messages with
coordination is msgc = 5*n-3. In the case of absence of
coordination, we will have msg = 2*n2-n-1. The gain with
the use of a coordinator is G =msgc/msg = 5*n-3 / 2*n2-n-1.

• If the delegation primitive is applied (in presence of a CA),
for example we assume that among n messages, only one is
accepted by the CA, (n-1)*0,5 are rejected (i.e. 50% of the
rest of requests) and (n-1)*0,5 are delegated to different
RAs. Thus, msgc = 3*n2/2+2*n-3/2, msg = 5*n2/2-2*n-1/2
and G = 3*n2/2+2*n-3/2 / 5*n2/2-2*n-1/2.
As application, we consider a network of 100 distributed
RAs transporting 60 messages per minute. We assume in
addition that probably 20 reconfigurations are requested per
minute. Therefore, the gain in the first case (coordination
without delegation as published in [4]) is G=0,12 and with
delegation G= 0,66.

Fig. 6 Evolution of the gain in number of exchanged messages.

The graph of Fig. 6 shows two curves corresponding to the
evolution of the gain in number of exchanged messages on the
network of N RAs (100≤N≤1000). The values of the abscises
axis correspond to the number of reconfiguration requests per
minute. The curve in bleu corresponds to the gain when we
apply a simple acceptance primitive (i.e. acceptance of the
highest-priority message by the CA). The curve in red
corresponds to the gain when we apply in addition to the
coordination, the delegation primitive. In particular, it represents
the evolution of gain when only 10% of messages are delegated.
It is important to note that the gain increases proportionally to
the percentage of delegated messages. In conclusion, the
presence of a CA on the network of distributed RAs allows

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 50 100 150 200 250

PC
Typewriter
25

obtaining a gain which decreases when the number of RAs
increases. However, this gain can be clearly optimized when we
apply the proposed extensions. In particular, the addition of the
delegation primitive to the communication protocol allows
having a gain that evolves proportionally to the number of RAs.
Consequently, the delegation allows to ameliorate the functional
safety of the whole systems even if the CA is broken.

V. CONCLUSION

By assuming recall and delegation primitives, we propose in
this paper a new optimization of a defined multi-agent
architecture in [4] for reconfigurable DECS. We prove the gain
of this extension by considering a formal example. A new
protocol is proposed to guarantee safe and coherent distributed
reconfigurations at run-time according to user requirements.
This protocol is based on reconfiguration agents affected to
devices, and a coordinator as well as coordination matrices for a
useful coordination between devices after any reconfiguration
scenario. Different directions can be mentioned as further work.
First of all, we plan to deal with a formal verification by using
UPPAAL to validate the change from one safe configuration to
another. We plan also to test our approach in the context of a
real-time operating system.

REFERENCES

[1] C. Angelov, K. Sierszecki, and N. Marian, “Design models for

reusable and reconfigurable state machines”, in L.T. Yang and
All (Eds): EUC 2005, LNCS 3824, pp:152-163. International
Federation for Information Processing, 2005.

[2] R. Brennan, P. Vrba, P. Tichý, A. Zoitl, C. Sünder, T. Strasser, V.
Marík. “Developments in dynamic and intelligent reconfiguration
of industrial automation”. Computers in Industry vol 59(6),
pp.533-547, 2008.

[3] M-N. Rooker, C. Sunder, T. Strasser, A. Zoitl, O. Hummer and
G. Ebenhofer, “Zero Downtime Reconfiguration of Distributed
Automation Systems : The εCEDAC Approach”, Third
International Conference on Industrial Applications of Holonic
and Multi-Agent Systems, Springer-Verlag, 2007.

[4] M. Khalgui and O. Mosbahi, “Intelligent Distributed Control
Systems”, Information and Software Technology, vol. 52(12),
pp. 1259-1271, December 2010.

[5] A. Ben Hadj Ali, M. Khalgui, and S. Ben Ahmed, “UML-Based
Design and Validation of Intelligent Agents-Based
Reconfigurable Embedded Control Systems”, International
Journal of System Dynamics Applications, vol.1(1), pp.17, 2012,
ISSN: 21609772,

[6] A. Ben Hadj Ali, M. Khalgui, A. Valentini, and S. Ben Ahmed,
“Safe reconfigurations of agents-based embedded control

systems”, in Proc. IECON 2011 - 37th Annual Conference on
IEEE Industrial Electronics Society, 2011, p. 4344.

[7] FESTO description, Martin Luther University, Germany,
http://aut.informatik.uni-halle.de/forschung/testbed/, 2008.

[8] EnAS description. Martin Luther University, Germany,
http://aut.informatik.uni-halle.de/forschung/enas_demo/, 2008.

[9] Y. Alsafi, V. Vyatkin, Ontology-based reconfiguration agent for
intelligent mechatronic systems in flexible manufacturing.
Robotics and Computer-Integrated Manufacturing, Volume 26,
Issue 4, Pages 381-391, August 2010.

[10] A. Zoitl, W. Lepuschitz, M. Merdan, M. Vallee, A Real-Time
Reconfiguration Infrastructure for Distributed Embedded Control
Systems, IEEE International Conference ETFA, 2010.

[11] Industrial Process Measurements and Control Systems, I. S.
IEC61499 2004.

PC
Typewriter
26

