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Abstract— This research paper deals with Distributed 
Reconfigurable Embedded Control Systems (RECS) which can 
dynamically follow different behaviors at run-time according to 
user requirements or any possible evolution in its environment. We 
optimize a multi-agent architecture for the system in which a 
Reconfiguration Agent is affected to each device to apply local 
reconfigurations, and a Coordination Agent is proposed for the 
coordination between devices in order to guarantee safe, coherent 
and adequate distributed reconfigurations. A Communication 
Protocol is proposed to handle this coordination between agents by 
using well-defined Coordination Matrices.  
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I. INTRODUCTION 

The constant growth of complexity of embedded control 
systems makes reconfiguration increasingly important. In this 
context, reconfiguration refers to the ability of a system to 
change its functionality at run-time, performing different 
functions at different instances in time. This ability to 
reconfigure a system in real-time allows available resources to 
be shared between multiple functions and configurations. The 
challenges, in reconfiguration, are as much about the design 
model as the level of the environment that supports execution. 
We distinguish two kinds of reconfigurations: static  [1] and 
dynamic reconfigurations  [2]. Static reconfigurations are applied 
off-line to apply changes before the system could start, whereas 
dynamic reconfigurations are applied dynamically at run-time.  
In the last case, two sub-classes exist: manual reconfigurations 
to be executed by users  [3] and automatic reconfigurations to be 
assured by intelligent agents  [2],  [4],  [5]. The reconfiguration of 
control systems is currently a very active research area where 
considerable progress has been made  [1],  [5],  [9],  [10].  

To deal with the dynamic reconfiguration of Distributed 
Embedded Control Systems (DECS), we propose, in this work a 
new Multi-Agent distributed architecture. We define two kinds 

of agents: software Reconfiguration Agents (RA) which are 
responsible for controlling the devices and a software 
Coordination Agent (CA) which handles the coherence of 
distributed concurrent reconfigurations of different devices. The 
coordination between devices after any distributed 
reconfiguration scenario is mandatory in order to avoid any risk 
of incoherence. We define also the concept of “coordination 
matrix” to specify for each reconfiguration scenario the behavior 
of all concerned agents that should react simultaneously. We 
define a reconfiguration protocol to manage the coordination 
between the networked devices. When a RA wants to apply a 
new reconfiguration, it sends a request to CA. A request 
represents a need to improve the system’s performance, or also 
to recover and prevent hardware/software errors, or also to adapt 
the system’s behavior to new requirements according to the 
environment’s evolution. Once the request is received by the 
CA, it informs all other concerned agents which should react 
with such RA which wants to trigger the new behavior. The 
execution of the reconfiguration scenario depends effectively on 
the answers of these reconfiguration agents which should decide 
if the new behavior can be executed or not. This protocol allows 
us to win an important number of exchanged messages on the 
network of distributed devices.  

This paper gives new extensions of our previous 
works  [4],  [5],  [6] with the purpose to allow high 
reconfigurability and also functional safety of DECS. The work 
presented in  [4] deals with distributed multi-agent 
reconfigurable embedded-control systems following the 
component-based International Industrial Standard 
IEC61499  [11]. The authors define an architecture of 
reconfigurable multi-agent systems and propose a coordination 
agent that coordinates between devices by using a 
communication protocol. The reconfiguration requests are 
managed by the coordinator according to their priority. The role 
of the coordinator is to accept or to reject a reconfiguration 
request.  The major contribution of the current paper is to 
provide new optimizations for the proposed communication 
protocol  [4] in several directions. Firstly, we assume that the CA 
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handles for each request an historic by giving for each RA the 
possibility to recall the execution of a given request at different 
times. The management of the reconfigurations historic allows 
saving knowledge on the requests frequency and eventual 
interactions between them (e.g. conflict or redundancy). Such 
knowledge will optimize the reconfigurability of the system and 
the CA behaviour for future reconfigurations. Furthermore, each 
RA can exhibit the behavior of the CA when this later decides to 
delegate the execution of a secondary request to its sender in the 
case that this request is sent at the same time than the one 
having the highest priority. Thus, we add a new functionality to 
the CA which is the delegation of reconfigurations management 
to RAs. The delegation functionality presents two major 
advantages. Firstly, it aims to improve the performance of the 
CA by reducing the number of requests it handles. Secondly, we 
optimize the functional safety when the coordinator is broken. 
In  [5] and  [6], the authors present a UML-based design 
approach for agent-based reconfigurable ECS having a 
centralised architecture. In the current paper, our aim is to 
extend this previous work by considering distributed 
architectures. Therefore, we assume that DECS are described as 
a network of interconnected controller components that can have 
different configurations. A configuration is defined by a set of 
components and connections between them. The execution of a 
reconfiguration request must bring the system from a valid 
configuration to another one while respecting the 
reconfiguration constraints.  

This paper is structured as follows. In section 2 we present 
the optimizations of the multi-agent architecture with the 
specification of the RAs and the CA behaviors. Section 3 deals 
with the optimizations of the communication protocol. Section 4 
presents experimental results. Finally, the major contributions of 
this work and future work are emphasized in the conclusion. 

II. OPTIMIZATION IN THE MULTI-AGENT ARCHITECTURE 

In this section, we present an optimization in the multi-agent 
architecture for reconfigurable DECS  [4]. A system Sys is 
composed of n networked devices {dev1, …devn}. Within the 
proposed architecture we distinguish two kinds of agents: 
Coordination Agent (CA) and Reconfiguration Agents (RA) 
(see Fig. 1). Both kinds of agents are represented by software 
components that act on the software control architecture in order 
to execute a particular task. The role of any RAi affected to a 
particular device devi (i=1..n)  is to apply automatic 
reconfigurations on the system’s architecture at different 
granularity levels. The execution of reconfigurations must bring 
the whole system from a valid configuration to another one 
while respecting the reconfiguration constraints. Because we 
assume a distributed system, each RA acts on a sub part of the 
system’s architecture but cannot act in his one: it receives 
reconfiguration requests from different sources and executes 
them in collaboration with the other RAs under certain 
conditions in order to bring the whole system to a safe state. 
Therefore, before execution, each reconfiguration request must 

be approved by an entity of the multi-agent architecture that 
manages the collaboration and the communication between 
distributed RAs. Consequently, we define the concept of 
Coordination Agent that handles the coherence of distributed 
reconfigurations between RA. When a RA wants to apply a new 
reconfiguration, it sends a request to the CA in order to have its 
approbation. The coordination in the context of DECS is very 
important because any uncontrolled dynamic reconfiguration 
can lead to critical problems when it brings the system to an 
incoherent and unsafe behaviour. In order to manage the 
coordination between RAs, we also define the concept of 
Coordination Matrix (CM) which contains safe reconfiguration 
scenarios that can be applied simultaneously by the different 
RAs. The Coordination Agent is therefore the entity that handles 
the set of CMs corresponding to the different reconfiguration 
scenarios. In addition, we propose, a communication protocol 
between distributed RAs to manage distributed reconfiguration 
scenarios. In this protocol we distinguish, three kinds of 
communication primitives between distributed agents: a RA can 
send a request to the CA in order to have its authorization for 
the execution of a reconfiguration scenario. As response to the 
request, the CA can accept, reject (definitively or provisory) or 
delegate the execution of the concerned scenario. These 
responses of the CA correspond respectively to three primitives: 
Acceptance primitive Rejection/Recall Primitive and Delegation 
primitive. The new extensions of the communication protocol 
(as presented in  [4]) concern mainly the addition of two 
functionalities: delegation and recall. The purpose of these 
extensions is to have high reconfigurability and functional safety 
especially when the CA is broken.  

A. Specification of the Reconfiguration Agent behavior  

As previously presented in  [5], the behaviour of a RA is 
formalized by using nested state machines. Indeed, we define 
three levels of reconfiguration: the first deals with the system 
architecture, the second deals with the internal structure of 
devices or with their connections, finally the third deals with 
reconfigurations of data. Therefore, in order to apply a 
reconfiguration scenario �i,j,k,h, the reconfiguration agent 
executes three steps as follows (i) the architectural configuration 
ACi is loaded in the memory (ACi denotes a particular 
architectural configuration), (ii) then the structural configuration 
SCi,j is chosen between different structural configurations 
corresponding to ACi (iii) finally, the data configuration DCi,j,k,h 
is applied. DCi,j,k correspond to a particular state machine 
relative to SCi,j and DCi,j,k,h denotes a state in DCi,j,k which 
correspond to one of the following cases: (i) one or more states 
of a SC state machine,(ii) more than one SC state machine, (iii) 
all the AC state machines.  

B. Specification of the Coordination Agent behavior  

Coordination between RAs appears to be essential in 
the automatic reconfiguration of DECS. Indeed, uncontrolled 
reconfigurations can lead to serious disturbances or critical 
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Fig. 1 Multi-agent architecture of reconfigurable DECS 

problems in the system behavior because distributed RAs can 
execute incoherent and contradictory reconfiguration scenarios 
if they don’t communicate correctly with respect to system and 
time constraints. To deal with these difficulties, we define in this 
section the concept of Coordination matrix with the purpose of 
handling coherent reconfiguration scenarios in distributed ECS 
and we propose, thereafter, a multi-agent architecture for 
distributed reconfigurable systems, where a communication 
protocol between agents is defined to guarantee safe behaviors. 

Coordination Matrix 
Let Sys be a distributed reconfigurable system of n devices, 

and let Ag1,..., Agn be n agents to handle automatic distributed 
reconfigurations of these devices. We denote in the following by 
Reconfigurationia,ja,ka,ha a reconfiguration scenario applied by 
the RA Aga (a ∈ [1, n]) as follows: (i) the corresponding AC 
state machine is in the state ACia . Let condaia be the set of 
conditions to reach this state; (ii) the SC state machine is in the 
state SCia,ja. Let condaja be the set of conditions to reach this 
state; (iii) the DC state machine is in the state DCka,ha . Let 
conda

ka,ha be the set of conditions to  reach this state. To handle 
coherent distributed reconfigurations that guarantee safe 
behaviors of the whole system Sys, we define the concept of 
coordination matrix (CM) of size (n,4) that defines coherent 
scenarios to be simultaneously applied by different RAs (see 
Fig. 1). A CM is characterized as follows: each line a (a ∈ [1, 
n]) corresponds to a reconfiguration scenario 
Reconfigurationia,ja,ka,ha to be applied by Aga as follows (see 
Fig. 2): 

CM[a, 1] = ia ; CM[a, 2] = ja ; CM[a, 3] = ka ;CM[a, 4] = ha 
According to this definition: If an agent Aga applies the 
reconfiguration scenario Reconfigurationia,ja,ka,ha, therefore it is 
equivalent to say that it applies the Reconfiguration 
CM[a,1],CM[a,2],CM[a,3],CM[a,4]. Each other RA Agb (b ∈ 
[1, n]\{a}) has to apply the scenario Reconfiguration 

CM[b,1],CM[b,2],CM[b,3],CM[b,4]. We denote in the 
following by idle agent, each agent Agb (b ∈ [1, n]), which is 
not required to apply any reconfiguration when others perform 
scenarios defined in CM. In this case: 

CM[b, 1] = CM[b, 2] = CM[b, 3] = CM[b, 4] = 0 
condb

CM[b,1] =condbCM[b,2] =condbCM[b,3],CM[b,4]  = True.  
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 Agn in jn kn hn ← Reconfiguration to be applied by      
the RA Agn 

 

        
Fig. 2 The Coordination Matrix 

We denote in addition by ξ(Sys) the set of coordination matrices 
to be considered for the reconfiguration of the distributed 
embedded system Sys. Each coordination matrix CM is applied 
at run-time if for each agent Aga (a∈[1, n]) the following 
conditions are satisfied: 

conda
CM[a,1] =condaCM[a,2] =condaCM[a,3],CM[a,4]  = True.  

On the other hand, we define concurrent coordination matrices, 
CM1 and CM2 two matrices of ξ(Sys) that allow different 
reconfigurations of a same RA Agb (b∈[1, n]) as follows:  
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Problem Diagnosis Improvment request 

         Coordination between 
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         Coordination between 
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• CMj [b, i] ≠ 0 ∀ ∈ ∈ j  {1, 2} and i  [1, 4]; in this case Agb 

should react when CM1 or CM2 is loaded. 
• CM1 [b, i] ≠ CM2 [b, i] ∀i ∈ [1, 4]; in this case, the agent 

Agb has to apply different reconfiguration scenarios at the 
same time.  

To guarantee a deterministic behavior when concurrent 
coordination matrices are required to be simultaneously applied, 
we define priority levels for them such that only the matrix with 
the highest priority level should be applied. We denote in the 
following by: 

• Concur(CM) is the set of concurrent matrices of CM ∈ 
ξ(Sys); 

• level(CM) is the priority level of the matrix CM in the set 
Concur(CM) ∪ {CM}. 

III.  OPTIMIZATION IN RECONFIGURATION PROTOCOL 

In this section we present an optimization in the 
reconfiguration protocol  [4] which describes the behaviour of 
distributed RAs orchestrated by a CA to dynamically 
reconfigure DECS. The software architecture of such systems is 
a network of control components where each one controls a sub-
part of the system. We assume in addition that software 
architecture of DECS is designed using a UML-compliant 
standard. In order to guarantee safe and coherent 
reconfigurations, we define a Coordination Agent denoted by 
CA  that handles a set of Coordination Matrices ℰ (Sys) to 
control the set of Reconfiguration Agents (Agi , i ∈ [1, n]) as 
follows: 

• When a particular agent Aga (a ∈ [1, n]) should apply a 
Reconfigurationia, ja, ka, ha it sends the following request 
to CA (ℰ (Sys)) to obtain its authorization: 

request (Aga, CA,   Reconfigurationia, ja, ka, ha).  

• When the CA receives r requests (r≥1) from different 
RAs at the same time then, it supports the highest priority 
request according to its ℰ (Sys). 

• When CA (ℰ (Sys)) supports this request that 
corresponds to a particular coordination matrix CM ∈ ℰ 
(Sys) and if CM has the highest priority between all 
matrices of Concur(CM) ∪ {CM}, then CA(ℰ (Sys)) 
informs the agents that have simultaneously to react with 
Aga as defined in CM. The following information is sent 
from CA (ℰ (Sys)) for each Agb, b ∈ [1, n]\ {a} and 
CM[b,i]≠0, ∀ i ∈ [1, 4]: 

Reconfiguration (CA, Agb, ReconfigurationCM[b, 1], CM[b, 2], 

CM[b, 3], CM[b, 4]).   

• According to well-defined conditions in the control 
component of each Agb, the CA (ℰ (Sys) request can be 
accepted, delegated or refused. In the following we 
present the reconfiguration algorithm and its 
procedures relative to the three different identified 
cases corresponding respectively to acceptance, 
delegation and rejection/recall primitives: 

A. Acceptance primitive 

In this case (see Fig. 3, a reconfiguration agent RA Aga 
(a=1..n) sends a request to the CA to have its authorization for 
applying a reconfiguration scenario. The CA must verify the 
applicability of the requested scenario by transferring the 
request to the other reconfiguration agents RA Agb (b=1..n, 
b≠a). Then, the requested scenario is applicable only if all the 
RA Agb send a positive response to the CA. Thereafter, the CA 
will authorize to the requester the execution of the requested 
scenario and the other RAs must follow by applying appropriate 
reconfigurations in order to bring the whole distributed system 
into a safe state. 

BEGIN 
If(priority = MAX)  
/*the reconfiguration request that has the highest  
priority is sent by Aga 
nReca=0  
/*initialization of the number of recalls for the RA Aga 

nRecc=0  
/*initialization of the number of recalls for the RA Agc 
reply = True  
/*a Boolean that represents the reply of CA to the  
reconfiguration request sent by Aga 
While (b≤n)  
/*for each Agb, b ∈ [1, n]\ {a} and CM[b,i]≠0, (1≤i≤4 )*/  

If (condb
ib = condb

jb = condb
kb,hb = True)  

    Then  
/*  Agb b ∈ [1, n] and CM [b, i] ≠ 0, ∀ i ∈ [1, 4] */ 
Accept (Agb, CA, Reconfigurationb CM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4]))  
/*Acceptance reply sent from Agb to CA  */ 

Else  
   Reject (Agb, CA), ReconfigurationCM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4] 
, 0)  
/*  Rejection reply sent from Agb to CA  */ 
reply= False 

End If 
End 
If (reply= True)  
/*If  CA  receives positive answers from all Agb then it 
authorizes reconfigurations in the concerned devices*/ 
Then  
For each Agb /*  Agb b ∈ [1, n] and CM [b, i] ≠ 0, ∀ i ∈ [1, 4]  
Apply (ReconfigurationCM[b, 1], CM[b, 2], CM[b, 3], CM[b, 4])  
/*Execution of the reconfiguration scenario in the device 
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supervised by Agb*/  

Else  
Call Rejection/Recall primitive 
End If 
Else 
/*the case of a reconfiguration request r that haven’t the 
highest priority sent by a RA Agc*/ 
Call Delegation primitive 
End If 

Fig. 3 Acceptance Primitive. 

B. Optimization: Rejection/Recall primitive 

In the case of acceptance, all the RA Agb (b=1..n, b≠a) must 
send a positive response to the CA before applying a 
reconfiguration scenario. In the rejection case (see Fig. 4), if 
there is only one RA Agb that sends a negative response then, 
the reconfiguration request is rejected. In addition, we assume 
that the CA can manage a history which is relative to each 
reconfiguration request. Indeed, the CA gives the possibility to 
the RAs to make several attempts to execute a given scenario 
before a definitive final rejection. The maximum number of 
attempts relative to a reconfiguration scenario is fixed by the 
CA. When a request is rejected, it is placed in a waiting queue 
which is managed by the CA, while the RA has not reached the 
allowed maximum number of attempts. The RA, can 
subsequently recall the CA of its request. Otherwise, if the 
maximum number is reached, then the request is definitively 
rejected and will not be stored in the waiting queue. Therefore, 
in addition to Rejection primitives, the CA has the ability to 
manage particular rejection cases (not definitive) by Recall 
primitives under known conditions.  The purpose of the recall 
process is to allow a high reconfigurability of the whole system.  

/*CA  receives a negative answer from a particular agent Agb  
If (nRec<maxRec)  
/*maxRec is a constant predefined by the CA and it represents 
the maximal number of recalls authorized by the CA for a 
reconfiguration request*/ 
nRec=nRec+1 
Reject(CA)), Aga, Reconfiguration ia, ja, ka, ha, nReca)  
/*Provisory Rejection reply sent from CA to Aga */  

Else /*  if nRec= maxRec 
Reject(CA), Aga, Reconfiguration ia, ja, ka, ha, maxRec) 
/*Definitive Rejection reply sent from CA to Aga*/  
End If 

Fig. 4 Rejection/Recall Primitive. 

C. Optimization: Delegation primitive 

In the common case, the CA defines by considering several 
constraints, a priority order to handle the reconfiguration 
requests coming from different and distributed RAs. In the case 
that the CA receives two requests at the same time, then it will 
deal with the request having the highest priority (sent by a RA 

Aga (a=1..n) ). Then the execution of a second request can be 
reported to an ulterior time. Nevertheless, to give more 
flexibility and optimality to our multi-agent architecture, the CA 
can delegate to a RA Agc (c=1..n, c≠a), the application of the 
second reconfiguration request (see Fig. 5) when it is not 
conflicting with the first scenario (with the highest priority) i.e. 
it doesn’t bring the system to an unsafe state.  

i=1 /*initialization of line’s index 
j=1 /*initialization of column’s index 
k=1 /*initialization of a counter for the list Conc  
h=1 /*initialization of a counter for the list notConc  
For each line in CM[i,j] 
/*research in CM for the list of RAs that are not idle and must 
apply the same reconfiguration scenario than Aga*/ 
while(CM [i,j]= CM [a,j] and j≤4)  
/*CM corresponds to the reconfiguration request that has the 
highest priority*/ 
  j=j+1 
End  
If(j=4) 
Then  
Conc[k]=i  
/*Conc is the list of RAs (different of AGa) concerned by the 
highest priority request in CM and that must apply the same 
reconfiguration scenario than Aga*/  

k=k+1 
Else 
notCon[h]=i  
/*notConc is the list of RAs (different of AGa) concerned by the 
highest priority request in CM and that not apply the same 
reconfiguration scenario than Aga*/  

i=i+1 
End If 
END 
i=1 /*initialization of line’s index 
j=1 /*initialization of column’s index 
while(i≤k)  //for each element in Conc  
j=1 /*Initialization of column’s index 
while(CMr[Conc[i],j]= 0 and and j ≤4)  
/*CMr represents a reconfiguration reqeststhat haven’t the 
highest priority sent by a RA Agc*/ 
j=j+1 
End 
If (j=4)  
/*  the RA having the same line index than Conc[i] in CMr is 
idle*/ 
Then 
i=i+1 
Else  
If(nRecc≤maxRec)  
/*max recall number of the RA Agc is not reached*/ 
Reject(CA), Agc, Reconfiguration ic, jc, kc, hc, nRecc)  
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nRecc= nRecc+1 
/*The reconfiguration request is rejected because there exists a 
not idle Ra having the same line index than the RA Conc[i] in 
CMr */  
Else 
Reject(CA), Agc, Reconfiguration ic, jc, kc, hc, maxRec) 
End If 
End 
i=1 /*initialization of line’s index 
j=1 /*initialization of column’s index 
while(i≤h)  /*for each element in notConc  
j=1 /*Initialization of column’s index 
while(CMr[notConc[i],j]= CM[notConc[i],j] and j ≤4)  
/*CMr and CM have exactly the same line then the 
reconfiguration request r is the same than the highest priority 
one and it will be definitively rejected*/ 
Reject(CA, Agc, Reconfiguration ic, jc, kc, hc, maxRec)  
End 
If (j=4)  
/*the RA having the same line index than Conc[i] in CMr is 
idle*/ 
Then 
i=i+1 
Else 
/*The reconfiguration request is rejected because there exists a 
not idle RA having the same line index than the RA Conc[i] in 
CMr*/ 
If(nRec<maxRec) 
  Reject(CA, Agc, Reconfiguration ic, jc, kc, hc nRecc)  
  nRecc= nRecc+1 
Else 
  Reject(CA, Agc, Reconfiguration ic, jc, kc, hc, maxRec)  
End If 
End If 
End 
/*The reconfiguration request r is delegated when all the RAs 
of Conc are idle in CMr and all RAs in notCon have to execute 
a different request than the highest priority one*/ 
Delegate(CA), Agc, Reconfiguration ic, jc, kc, hc) 
End If 
END 

Fig. 5 Delegation Primitive. 

IV.  EXPERIMENTAL RESULTS 

In this section, we give an evaluation of the proposed 
communication protocol for intelligent reconfigurations of 
DECS by varying the number of reconfiguration messages 
exchanged within the network of distributed agents. We assume 
that n RAs send n reconfiguration requests at the same time. We 
denote by msgc the number of exchanged messages by 
distributed agents when we use a CA in the network. In the case 
of absence of coordination, we denote by msg the number of 
exchanged messages. A message in both cases can represent a 

request, an acceptance, a rejection (provisory or definitive), a 
delegation or an execution order (apply) from the coordinator. 
The gain (denoted by G) obtained by the proposed protocol is  
msgc / msg and it represents the decrease of the exchanged 
messages between distributed devices when we use a CA. In the 
following, we will detail different cases of execution: 
• If one message is accepted (among n requests sent by n RAs) 

and all others are refused (only the highest-priority message 
is accepted). Then, the number of exchanged messages with 
coordination is msgc = 5*n-3. In the case of absence of 
coordination, we will have msg = 2*n2-n-1. The gain with 
the use of a coordinator is G =msgc/msg = 5*n-3 / 2*n2-n-1. 

• If the delegation primitive is applied (in presence of a CA), 
for example we assume that among n messages, only one is 
accepted by the CA, (n-1)*0,5 are rejected (i.e. 50% of the 
rest of requests) and (n-1)*0,5 are delegated to different 
RAs. Thus, msgc = 3*n2/2+2*n-3/2, msg = 5*n2/2-2*n-1/2 
and G = 3*n2/2+2*n-3/2 / 5*n2/2-2*n-1/2. 
As application, we consider a network of 100 distributed 
RAs transporting 60 messages per minute. We assume in 
addition that probably 20 reconfigurations are requested per 
minute. Therefore, the gain in the first case (coordination 
without delegation as published in  [4]) is G=0,12 and with 
delegation G= 0,66. 
 

 
Fig. 6 Evolution of the gain in number of exchanged messages. 

The graph of Fig. 6 shows two curves corresponding to the 
evolution of the gain in number of exchanged messages on the 
network of N RAs (100≤N≤1000). The values of the abscises 
axis correspond to the number of reconfiguration requests per 
minute. The curve in bleu corresponds to the gain when we 
apply a simple acceptance primitive (i.e. acceptance of the 
highest-priority message by the CA). The curve in red 
corresponds to the gain when we apply in addition to the 
coordination, the delegation primitive. In particular, it represents 
the evolution of gain when only 10% of messages are delegated. 
It is important to note that the gain increases proportionally to 
the percentage of delegated messages. In conclusion, the 
presence of a CA on the network of distributed RAs allows 
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obtaining a gain which decreases when the number of RAs 
increases. However, this gain can be clearly optimized when we 
apply the proposed extensions. In particular, the addition of the 
delegation primitive to the communication protocol allows 
having a gain that evolves proportionally to the number of RAs.  
Consequently, the delegation allows to ameliorate the functional 
safety of the whole systems even if the CA is broken.  

V. CONCLUSION 

By assuming recall and delegation primitives, we propose in 
this paper a new optimization of a defined multi-agent 
architecture in  [4] for reconfigurable DECS. We prove the gain 
of this extension by considering a formal example. A new 
protocol is proposed to guarantee safe and coherent distributed 
reconfigurations at run-time according to user requirements. 
This protocol is based on reconfiguration agents affected to 
devices, and a coordinator as well as coordination matrices for a 
useful coordination between devices after any reconfiguration 
scenario. Different directions can be mentioned as further work. 
First of all, we plan to deal with a formal verification by using 
UPPAAL to validate the change from one safe configuration to 
another. We plan also to test our approach in the context of a 
real-time operating system. 
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